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On the basis of solutions of the linearized heat-conduction equations, formulas 
are derived for the highly accurate determination of the thermophysical char- 
acteristics of solid materials. 

Most methods of determining the temperature dependence of the thermophysical character- 
istics of solid materials are based on solutions of the linear heat-conduction equations. 
This leads to simpler computational formulas, but decreases the accuracy of the determina- 
tion of the required quantities, and increases the cost and duration of an experiment. 

We discuss methods based on solutions of the linearized heat-conduction equations which 
differ from the nonlinear equations 

1 a [rk~) ~ ] , 
poCk) aT = r k Or ~-r (k=0,  1, 2) (1) 

i n  the  s i m p l i c i t y  o f  the  s o l u t i o n ,  a h i g h  d e g r e e  o f  a c c u r a c y ,  and the  p o s s i b i l i t y  o f  c o n -  
s t r u c t i n g  s i m p l e  c a l c u l a t i o n a l  f o r m u l a s  f o r  the  t h e r m o p h y s i c a l  c h a r a c t e r i s t i c s  o f  s o l i d  ma- 
t e r i a l s .  One of  the  g roups  o f  l i n e a r i z e d  h e a t - c o n d u c t i o n  e q u a t i o n s  i s  g i v e n  i n  [ l ]  and has  
the  form 

O~+xt - - a o - -  r ~ (k=O, 1, 2), 
an n aT Or ~ r ~ Or -~r  (2) 

where ao is the thermal diffusivity of the material at the initial temperature to. It is 
shown in [1] that for n = I (and more so for n = 2) the solutions of Eqs. (1) and (2) are 
rather close to one another. 

A second group of linearized equations has the form [2]: 

a2o, a2 [ i ao, ( a| 
0 %  2 = a o - -  r k - -  Or 2 r k Or ~ (k=O, 1,2), 

(3) 

where 

0202 __Oz [ 1 002 (rk002)] 
aT 2 - a~ Or S r k Or ~-r (k=0,  1, 2), (4) 

o~(r, T)= ! S ~(0 ~; (5) 
to 

t j. 1 C (0 dr; 02 (r, %) - -  C0 (6) 
to 

t h e  t h e r m a l  c o n d u c t i v i t y  %o and t h e  s p e c i f i c  h e a t  Co a r e  a l s o  e v a l u a t e d  a t  t he  i n i t i a l  tem- 
p e r a t u r e  t o .  

I n  o r d e r  t o  d e r i v e  t he  r e q u i r e d  f o r m u l a s ,  we c o n s i d e r  an i n f i n i t e  p l a t e  o f  t h i c k n e s s  2R 
which  i s  h e a t e d  s y m m e t r i c a l l y  and a t  z e r o  t ime has  the  t e m p e r a t u r e  t o .  The f o l l o w i n g  bound-  
a r y  c o n d i t i o n s  a r e  assumed:  
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O(x, T)l,=o=0 (o<x~<R), (7) 

aO(x, ~) I = o (O<~x~R), (8) aT I'r 

e(x, '01x_o = ~o(T) ( -~>o) ,  (9)  

O(x, ~)ix=Rn = ~R/~ (T) ( ~ > 0 ) ,  (10) 

e(x, T)I.=fR=~(T) ('~>0), (11) 

00(x,  T) [ ----0 (z>~0), (12) 

~(X,ox T) ~= =q(~) (~>o), (13) ~,(e) 

where O ( x ,  I") = t(x, I") -- to. 

L e t  us c o n s i d e r  f i r s t  Eq. (2) f o r  n = I and k = O, i . e . ,  

810 ~ 0  
- -  = a 0 - -  ( 1 4 )  
oxaT ax 3 

Tak ing  t he  L a p l a c e  t r a n s f o r m  o f  E q .  (14) and u s i n g  ( 7 ) ,  ( 9 ) ,  ( 1 1 ) ,  and ( 1 2 ) ,  we o b t a i n  

r a0 
7" (x, s) ---- ~o (s) + [ ~  (s) - -  ~0 (s)l - / "  s (15) 

ch V ~ R - - 1  

Tak ing  t he  i n v e r s e  t r a n s f o r m  and l i m i t i n g  o u r s e l v e s  to  f i r s t - o r d e r  d e r i v a t i v e s  of  ~Po(T) and 
R(T) ,  we f i n d  

X 2 X" (X z -- R ~) (16) 

The restriction to first-order derivatives of q~o(":) and (~n(T), as shown in practice [3,4], is 
fully justified, since in the final solution the terms containing second derivatives are 
negligibly small in comparison with those containing first derivatives. 

An analysis of Eq. (1) for k = 0 and x -~ 0 shows that 

o r  

p0C(O at ] ~:t ~=o (17) 

] ( 1 8) \Ox 2 / j,~o" 
Taking account of previous remarks and Eq. (16), we obtain the required expression for the 
thermal diffusivity in the form 

a (t) = ~0 (T) R ~ ( 1 9 )  
1 

2 (~R (T) - ~0 (T)) - (~ (T) - ~0 (~)) 6~ 

If the plate is heated at the rate b under quasisteady conditions, Eq. (19) leads directly 
to the well-known formula [5] 

bR 2 
a ~ 

2At (20) 

which i s  f u n d a m e n t a l l y  d i f f e r e n t  f rom ( 1 9 ) .  Th i s  d i f f e r e n c e  c o n s i s t s  f i r s t  i n  the  f a c t  t h a t  
Eq.  (20) was d e r i v e d  f rom the  s o l u t i o n  o f  t h e  l i n e a r  s e c o n d - o r d e r  h e a t - c o n d u c t i o n  e q u a t i o n  
and can be  a p p l i e d  f o r  t e m p e r a t u r e  d rop s  o f  the  o r d e r  o f  10-15~ be tween  t h e  b o u n d a r y  s u r -  
f a c e s .  Second, when it is used there remains open the question of the temperature (at the 
center, on the surface, or their average) to which the values obtained refer. Equation (19) 
is obtained from the solution of the linear third-order heat-conduction equation, and is 
therefore more accurate. In addition, it lacks that indeterminancy which was mentioned in 
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connection with Eq. (20), since, according to (19), the thermal diffusivity is determined 
at the point x = 0. Finally, it does not require quasisteady heating conditions and does 
not limit the temperature drop between the boundary surfaces. Further, let us consider Eq. 
(2) for n = 2 and k = 0. Taking account of (7) and (9)-(11), the solution of its transform 
is 

6(l, X, s) 8 (R,  X, ~ (21)  
T @, s) = r (~ + lea (s) - -  % (s)l 8 (t, R, s) + [r (s) - -  %(s)l 6 (R, t, ~ ' 

where 

o,,.., .~.--(o, ff -~ ,- ,)(., f ~ .... x_v/Tx) ~ _(., V~.-O (s, V~: ,- (~_ T ,); 
( r )( v'" ~-v'.~)-(~r ~_~)(s~f. r  6 (R, x, s) = eh ao x - -  1 sh a---o- ao ' a-~- x - -  ~ x ; 

- - F -  o,~. ,.~ + v rzoo ~- l ) ( ~ / ~  ~ _ / ~  ~)_ ( ~ / ~  ~_ ,)(~ ~ :o ~- v ~ -~ ,). 
The complexity of the denominator makes {inding the inverse transform rather complicated. 
However, by using the procedure given above, we find that 

x~(x--l) + 
o (x, t )  = r ( t )  + (Ca (~) - -  q~o ( t ) )  .R~ (R - -  0 

where 

x~ (,r - -  x) x~ ( R - -  x) + Off (t) - -  G (,r)) A2 (R, Z, x), + ( G  (,r) - -  % (,r)) & (,r Z, x) + (q~ (t) - -  r ('0) Z~ (R - -  0 /~ (a  - -  ,9 

A~ (R, l, x) x~ (x - -  0 (x - -  R) (3x + 3 l - -  2R) . 
60aoR 2 (R - -  l) 

x ~ (l - -  x) (R - -  x) (2R - -  31 - -  3x) 
A,. (R, l, x) = 

60ao/z (R - -  '9 

As before, we have from (18)  

where 

(22)  

(Po (x) (23)  
a (t)[x=o = F (x)q-  tp (t) ' 

2R 21 ~ 

F (t)  = [q~ ( t )  - -  q~o (t) l  l 2 (~  _ 0 [Ca (~) - -  % (~)l R2 (R  - -  0 ' 

R (2R ~- 30 R ( 2 / - -  3R) 

30ao/(R - -  l) 30ao/(R - - / )  

Equation (23) appears somewhat more complicated than (19). It is more accurate, however, 
since it was obtained from the solution of the linear fourth-order heat-conduction equation. 
It is not difficult to determine the thermal conductivity also. Thus, e.g., if during the 
experiment the heat flux q(T) is given, then using (16), (22), and (13) we obtain expres- 
sions for the thermal conductivity of the material under study. 

It is of interest to consider the use of the linearized heat-conduction equations of 
the second group to determine the thermophysical characteristics of materials. Let us 
assume that the thermal conductivity of the material under study is known beforehand. In 
this case it is expedient to use Eq. (3). Thus, for symmetric heating of an infinite plate 
it has the form 

0~01 -- a~ 040----! , (24) 
at 2 a~ 

and the following boundary conditions can be specified: 

Ot(x, 1 : ) [ t=o=O (O<-~x~R), (25)  

aoi(x, t)  [ ' o (O<~x<.KR), (26)  
0~ It=0 
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Fig. I. Temperature dependence of 
the thermal diffusivity of poly- 
tetrafluoroethylene: l) by Eq. (19); 
2) from data in [6]; 3) by Eq. (23). 
2z.107 is in m2/sec, and t is in ~ 

%(x, X)l,,= o =(Do(r) ( '~>0),  

%(x,  X)l,,=,v 2 = % / 2 ( x )  ( x > 0 ) ,  

O~ (x, x)l..=~ = % 0:) (x > 0), 

OOtox(X, x) ,,=o = 0 (x >/0),  

where the  f u n c t i o n s  ~o( ' r) ,  CR/.,('c), and ~R('r) a r e  found from Eq. 
d e s c r i b e d  above, we w r i t e  down the  s o l u t i o n  of  the  system given:  

where 

+ (D' (1:) 

(27) 

(28) 

(29) 

(30) 

(5). Applying the procedure 

x 3 (x"-- t9 ] + + 
R~/2 (R -- 0 ] 

t (R" -- x 2) (& (R, t, x) -- 
R 2 (R -- t) 

By analyzing Eq. 
specific heat 

R (l z -  xD l (R' - -  xD 
O, (x, x) = (Do ('0 t' ( R - -  0 R ~ ( R - -  0 

, [R(I 9 - x 9  (at(R, l, x ) - -6(R,  /)) 
q- (Do (x) L 12 (R -- l) 

x2(R--x ) + 
x 3 ( a z _  t2) (~3 x) 8 (R, O) + (D~ (x) l" (R--  t) - -8(R,  O) + (R, t, - 
R2F " ( R - -  l) 

x" (x -- 0 x" (x -- 0 
x' (R- -  x) (~ (R, x) - -  ~ (R, t)) + % ('0 R~ (R t) + (D'~ (x) R" (R--  0 
t" (R -- 0 

(31) 

(85 (t, x) -- 6 (,~, 0), 

R ~ l ~ + IZx 9 -4- x4 s 
6t (R, l, x ) =  840a~ + 360a~o 24a2o ; 

l ~ 10 + R2x z + x ~ R'x z 
62 (R, l, x ) =  ~ q- 360a~ 24a~ ; 

x ~ R ~ "F 1~[ z "-F l ~ R zlz 
t, x) = S- oo + ze, 24,,, o ; 

10 + RSx + l~xZ + Rx' + x t 
8, (R, x) = 84Oa~ 

x~ + xSl + x21" + xl 3 + 14 
85(t, x) = 840a~0 

R ~ -k R 3l "q- RZl z + RP + 14 
6,(R, O = 840a~ 

_ Rx (R z + Rx + x9 . 
s6o,,  

xl  (x2-F xl 'q- l~ . 
a6o 'o ' 

Rl ( ~  + Rt + t =) 
3~a~  

(I) for k = 0 and taking account of (5), we obtain the expression for the 

(t) 
c (O)lx=0 - 

Po [ ~~ (% (x))-'l x=0 ax 2 (32) 
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Similarly, from the solution of Eq. (4) for k = 0 with boundary conditions similar to (25)- 
(30), an expression can be obtained for the thermal conductivity if the specific heat of the 
material is known beforehand. 

The above procedure can easily be carried over to cylindrical and spherical symmetries. 
In addition, the methods presented are general, since they can be used under very different 
conditions of heating. 

Figure 1 shows the results of experimental studies of the thermal diffusivity of poly- 
tetrafluoroethylene. It is clear from the figure that the higher the order of the equation 
the lower the position of the curve. Since Eq. (23) is based on the solution of the fourth- 
order linear heat-conduction equation, one should expect that it most completely reflects 
the true character of the variation of the temperature dependence of the thermal diffusivity 
of polytetrafluoroethylene. 
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